What is the area of a parallelogram with length x + 4 and height x + 3?

Disable ads (and more) with a premium pass for a one time $4.99 payment

Prepare for the Pending Internet Computerized Adaptive Test with flashcards and multiple choice questions that include hints and explanations. Ace your test with confidence!

To find the area of a parallelogram, you can use the formula:

Area = Base × Height

In this case, the base is represented by the expression (x + 4) and the height is represented by (x + 3).

To calculate the area, you multiply these two expressions:

[(x + 4)(x + 3)]

Applying the distributive property (also known as the FOIL method for binomials), we get:

  1. First: (x \cdot x = x^2)
  2. Outer: (x \cdot 3 = 3x)
  3. Inner: (4 \cdot x = 4x)
  4. Last: (4 \cdot 3 = 12)

Now, combine all these results:

[x^2 + 3x + 4x + 12 = x^2 + 7x + 12]

Thus, the area of the parallelogram is expressed as (x^2 + 7x + 12). This matches choice B, making it the correct answer. The other options do not have the correct combination of coefficients, leading to incorrect

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy